
Automatic detection of the foveal center in
optical coherence tomography

BART LIEFERS,1,2,* FREERK G. VENHUIZEN,1,2 VIVIAN SCHREUR,2

BRAM VAN GINNEKEN,1 CAREL HOYNG,2 SASCHA FAUSER,3,4

THOMAS THEELEN,1,2 AND CLARA I. SÁNCHEZ1,2

1Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, the Netherlands
2Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
3Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
4Cologne University Eye Clinic, Cologne, Germany
*Bart.Liefers@radboudumc.nl

Abstract: We propose a method for automatic detection of the foveal center in optical coherence
tomography (OCT). The method is based on a pixel-wise classification of all pixels in an OCT
volume using a fully convolutional neural network (CNN) with dilated convolution filters. The
CNN-architecture contains anisotropic dilated filters and a shortcut connection and has been
trained using a dynamic training procedure where the network identifies its own relevant training
samples. The performance of the proposed method is evaluated on a data set of 400 OCT scans
of patients affected by age-related macular degeneration (AMD) at different severity levels.
For 391 scans (97.75%) the method identified the foveal center with a distance to a human
reference less than 750 µm, with a mean (± SD) distance of 71 µm ± 107 µm. Two independent
observers also annotated the foveal center, with a mean distance to the reference of 57 µm±84 µm
and 56 µm ± 80 µm, respectively. Furthermore, we evaluate variations to the proposed network
architecture and training procedure, providing insight in the characteristics that led to the
demonstrated performance of the proposed method.
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OCIS codes: (110.4500) Optical coherence tomography; (100.4996) Pattern recognition, neural networks; (100.2960)
Image analysis; (170.4470) Clinical applications; (170.4470) Ophthalmology.

References and links
1. P. A. Keane, S. Liakopoulos, K. T. Chang, M. Wang, L. Dustin, A. C. Walsh, and S. R. Sadda, “Relationship between

optical coherence tomography retinal parameters and visual acuity in neovascular age-related macular degeneration,”
Ophthalmology 115, 2206–2214 (2008).

2. S. M. Waldstein, A. Philip, R. Leitner, C. Simader, G. Langs, B. S. Gerendas, and U. Schmidt-Erfurth, “Correlation
of 3-dimensionally quantified intraretinal and subretinal fluid with visual acuity in neovascular age-related macular
degeneration,” JAMA Ophthalmology 134, 182–190 (2016).

3. Diabetic Retinopathy Clinical Research Network, “Relationship between optical coherence tomography–measured
central retinal thickness and visual acuity in diabetic macular edema,” Ophthalmology 114, 525–536 (2007).

4. T. Otani, Y. Yamaguchi, and S. Kishi, “Correlation between visual acuity and foveal microstructural changes in
diabetic macular edema,” Retina 30, 774–780 (2010).

5. M. Adhi and J. S. Duker, “Optical coherence tomography–current and future applications,” Curr. Opin. Ophthalmol.
24, 213 (2013).

6. W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present
and future perspectives,” Br. J. Ophthalmol. (2010).

7. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto,
“Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).

8. M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, “Fast detection of the optic disc and fovea in color fundus
photographs,” Med. Image Anal. 13, 859–870 (2009).

9. A. S. Maheshwary, S. F. Oster, R. M. Yuson, L. Cheng, F. Mojana, and W. R. Freeman, “The association between
percent disruption of the photoreceptor inner segment–outer segment junction and visual acuity in diabetic macular
edema,” Am. J. Ophthalmol. 150, 63–67 (2010).

10. C. Balaratnasingam, M. Inoue, S. Ahn, J. McCann, E. Dhrami-Gavazi, L. A. Yannuzzi, and K. B. Freund, “Visual
acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion,”
Ophthalmology 123, 2352–2367 (2016).

https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.8.005160&domain=pdf&date_stamp=2017-10-23


11. P. C. Issa, M. C. Gillies, E. Y. Chew, A. C. Bird, T. F. Heeren, T. Peto, F. G. Holz, and H. P. Scholl, “Macular
telangiectasia type 2,” Progress in Retinal and Eye Research 34, 49–77 (2013).

12. A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in
healthy eyes using stratus optical coherence tomography,” Arch. Ophthalmol. 124, 193–198 (2006).

13. P. A. Campochiaro, J. S. Heier, L. Feiner, S. Gray, N. Saroj, A. C. Rundle, W. Y. Murahashi, R. G. Rubio, BRAVO
Investigators, “Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point
results of a phase iii study,” Ophthalmology 117, 1102–1112 (2010).

14. P. Massin, A. Erginay, B. Haouchine, A. B. Mehidi, M. Paques, and A. Gaudric, “Retinal thickness in healthy and
diabetic subjects measured using optical coherence tomography mapping software.” Eur. J. Ophthalmol. 12, 102–108
(2001).

15. Age-Related Eye Disease Study Research Group, “A randomized, placebo-controlled, clinical trial of high-dose
supplementation with vitamins c and e, beta carotene, and zinc for age-related macular degeneration and vision loss:
Areds report no. 8,” Arch. Ophthalmol. 119, 1417–1436 (2001).

16. C. D. Regillo, D. M. Brown, P. Abraham, H. Yue, T. Ianchulev, S. Schneider, N. Shams, “Randomized, double-masked,
sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: Pier study year 1,” Am. J. of
Ophthalmol. 145, 239–248 (2008).

17. B. Gerendas, S. Waldstein, J. Lammer, A. Montuoro, G. Bota, C. Simader, U. Schmidt-Erfurth, and Vienna Reading
Center, “Centerpoint replotting and its effects on central retinal thickness in four prevalent SD-OCT devices,” Invest.
Ophthalmol. Vis. Sci. 53, 4114–4114 (2012).

18. F. Wang, G. Gregori, P. J. Rosenfeld, B. J. Lujan, M. K. Durbin, and H. Bagherinia, “Automated detection of the
foveal center improves SD-OCT measurements of central retinal thickness,” Ophthalmic Surgery, Lasers and Imaging
Retina 43, S32–S37 (2012).

19. S. Tick, F. Rossant, I. Ghorbel, A. Gaudric, J.-A. Sahel, P. Chaumet-Riffaud, and M. Paques, “Foveal shape and
structure in a normal population,” Invest. Ophthalmol. Vis. Sci. 52, 5105–5110 (2011).

20. J. Wu, S. M. Waldstein, A. Montuoro, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Automated fovea detection
in spectral domain optical coherence tomography scans of exudative macular disease,” Int. J. of Biomed. Imaging
2016 (2016).

21. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers
in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).

22. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer
segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express 4, 1133–1152 (2013).

23. R. Kafieh, H. Rabbani, F. Hajizadeh, M. D. Abramoff, and M. Sonka, “Thickness mapping of eleven retinal layers
segmented using the diffusion maps method in normal eyes,” J. Ophthalmol. 2015 (2015).

24. S. J. Chiu, M. J. Allingham, P. S. Mettu, S. W. Cousins, J. A. Izatt, and S. Farsiu, “Kernel regression based
segmentation of optical coherence tomography images with diabetic macular edema,” Biomed. Opt. Express 6,
1172–1194 (2015).

25. A. Montuoro, S. M. Waldstein, B. S. Gerendas, U. Schmidt-Erfurth, and H. Bogunović, “Joint retinal layer and fluid
segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context,”
Biomed. Opt. Express 8, 1874–1888 (2017).

26. G. Litjens, T. Kooi, B. E, Bejnordi, A. A. A. Setio, F. Ciompi M. Ghafoorian, J. A. W. M. van der Laak, B. van
Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88
(2017).

27. L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer
boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt.
Express 8, 2732–2744 (2017).

28. F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez,
“Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural
networks,” Biomed. Opt. Express 8, 3292–3316 (2017).

29. S. P. K. Karri, D. Chakraborty, and J. Chatterjee. “Transfer Learning Based Classification of Optical Coherence
Tomography Images with Diabetic Macular Edema and Dry Age-Related Macular Degeneration,” Biomed. Opt.
Express 8, 579–592 (2017).

30. A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab, “ReLayNet: retinal layer
and fluid segmentation of macular optical coherence tomography using fully convolutional networks,” Biomed. Opt.
Express 8, 3627–3642 (2017).

31. B. Liefers, F. G. Venhuizen, T. Theelen, C. Hoyng, B. van Ginneken, and C. I. Sánchez, “Fovea detection in optical
coherence tomography using convolutional neural networks,” Proc. SPIE 10133, (2017).

32. J. P. van de Ven, D. Smailhodzic, C. J. Boon, S. Fauser, J. M. Groenewoud, N. V. Chong, C. B. Hoyng, B. J. Klevering,
and A. I. den Hollander, “Association analysis of genetic and environmental risk factors in the cuticular drusen
subtype of age-related macular degeneration,” Molecular Vision 18, 2271–2278 (2012).

33. S. Fauser, D. Smailhodzic, A. Caramoy, J. P. H. van de Ven, B. Kirchhof, C. B. Hoyng, B. Jeroen Klevering,
S. Liakopoulos, and A. I. den Hollander, “Evaluation of serum lipid concentrations and genetic variants at high-
density lipoprotein metabolism loci and TIMP3 in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.
52, 5525–5528 (2011).



34. S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, AREDS 2Ancillary Spectral Domain
Optical Coherence Tomography Study Group, “Quantitative classification of eyes with and without intermediate
age-related macular degeneration using optical coherence tomography,” Ophthalmology 121, 162–172 (2014).

35. F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint arXiv:1511.07122
(2015).

36. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs,” arXiv preprint arXiv:1606.00915 (2016).

37. M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian, “A real-time algorithm for signal analysis
with the help of the wavelet transform,” in “Wavelets,” (Springer, 1990), pp. 286–297.

38. Theano Development Team, “Theano: A Python framework for fast computation of mathematical expressions,” arXiv
e-prints abs/1605.02688 (2016).

39. S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, “Lasagne: First release.”
http://dx.doi.org/10.5281/zenodo.27878 (2015).

40. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in “IEEE Conf.
Comput. Vis. Pattern Recognit.”, (2015), pp. 3431–3440.

41. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv preprint arXiv:1512.03385
(2015).

42. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,”
MICCAI 2015: 18th International Conference 9351, 234âĂŞ241 (2015).

43. A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in
“Proceedings of the International Machine Learning Society”, 30 (2013)

44. M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. Sánchez, “Fast convolutional neural network
training using selective data sampling: Application to hemorrhage detection in color fundus images,” IEEE Trans.
Med. Imag. 35, 1273–1284 (2016).

45. M. J. Hogan and J. JA Weddell, “Histology of the human eye: an atlas and textbook,” (1971).
46. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint

arXiv:1409.1556 (2014).
47. A. Govetto, R. A. Lalane III, D. Sarraf, M. S. Figueroa, and J. P. Hubschman, “Insights into epiretinal membranes:

Presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme,” Am. J. Ophthalmol.
175, 99 – 113 (2017).

48. L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt and S. Farsiu “Fast acquisition and
reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imag. 32,
2034–2049, (2013).

49. L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography
images,” IEEE Trans. Med. Imag. 36, 407–421 (2017).

1. Introduction

The fovea is a region located near the center of the retina with the highest concentration of cones,
photoreceptor cells responsible for color vision. As a result of this elevated concentration, the
fovea is responsible for central vision and high spatial acuity. Consequently, any small alteration
of its morphology or the presence of abnormalities in this area directly affects visual acuity [1–4].
Closely monitoring the fovea and its changes is therefore highly important for the prevention and
assessment of vision threatening conditions.
Optical coherence tomography (OCT) is a non-invasive imaging technology that allows a

detailed in-vivo analysis of the interior of the retina and, particularly, the fovea. This technique is
based on low-coherence interferometry, where differences in back-scattering properties reveal the
layered structure of the retina and produce high resolution images of cross sections of the retina.
The resolution and image quality of OCT scans have improved rapidly in recent years, making it
a leading imaging modality in clinical practice [5,6]. With OCT a more reliable estimation of the
exact location of the fovea can be made compared to en-face modalities such as color fundus
imaging, especially in retinal pathology [7, 8].
Studying the morphology of the fovea and its surroundings as seen in OCT helps in the

early detection and understanding of retinal diseases, such as age-related macular degeneration
(AMD) [1,2], diabetic macular edema (DME) [4,9], retinal vein occlusion (RVO) [10] or macular
telangiectasia [11]. Additionally, the foveal position in OCT scans is a key reference landmark
for the extraction of reliable quantitative biomarkers. Central macular thickness (CMT), defined



as the average retinal thickness in the 1 mm disk centered on the fovea [12], and markers based
on fovea-centered measurement grids, such as the Early Treatment Diabetic Retinopathy Study
(ETDRS) grid, have become important quantitative measurements to monitor disease progression
and treatment response objectively [13, 14]. These values are commonly used as biomarkers
in large population studies and clinical trials [15, 16]. However, these measurements highly
depend on a precise location of the foveal center, as deviations from the correct position have a
detrimental impact in their calculated values and consequently their reliability [17, 18].
During OCT acquisition, the geometric center of the OCT volume is usually placed at the

foveal center. However, this center often does not align with the actual foveal center due to the
presence of pathology or poor participant’s fixation [18]. Consequently, the scan center might not
be a reliable estimation of the correct foveal center. Manual corrections are therefore required to
prevent misleading outcomes, which is time consuming, undesirable and even unfeasible in large
data sets. Fully automated methods are then required for the accurate and efficient localization of
the foveal center in OCT scans.
In a healthy retina, the fovea in OCT is characterized by 1) a concave dip in the retina, 2) the

absence of the inner layers of the retina and 3) a slight thickening of the ellipsoid zone (EZ) [19].
In pathological retinas, the presence of abnormalities can drastically alter the expected appearance
of the fovea, making the detection of the fovea a challenging problem, even for experienced
human graders [18, 20]. Figure 1 shows an example of a healthy and a pathological fovea.
The thinning and confluence of retinal layers near the fovea has been used by several authors

to estimate the fovea position, which was required to improve results of layer segmentation
algorithms [21–24]. In [25] the position of the fovea is estimated by training a random forest
regressor based on thickness estimates to predict the distance to the fovea for each A-scan. By
using a random sample consensus, the A-scan with the final fovea position is found. However,
disrupting retinal structures, such as fluid or atrophy, may render the deduction of the foveal
position from thickness measurements unreliable. In [20] automated detection of the fovea in
pathological retinas was approached by generalizing the fovea morphology into three fixed
categories of foveal shape: normal, minor and absent foveal depression. This limited number of
foveal shapes still prevents the method to account for the large variation in foveal morphology
shown in OCT.
In recent years the use of convolutional neural networks (CNNs) has gained popularity in

medical image analysis [26]. Their application to OCT has been demonstrated by e.g. retinal
layer segmentation [27, 28], identification of retinal pathologies [29] or segmentation of fluid
in combination with retinal layers [30]. In this paper, we propose a method based on CNNs for
the automated detection of the foveal center in OCT volumes, building upon our previous work
described in [31]. We introduce a novel fully CNN architecture which combines anisotropic
dilated convolutions and a shortcut connection. This architecture provides a large contextual
window to account for the wide variability of foveal shapes, while maintaining the ability to make
predictions at pixel level accuracy. In contrast to previously proposed approaches, the method
is morphology-agnostic, avoiding a priori assumptions of the foveal shape or preprocessing
steps such as layer segmentation, which makes it robust to the presence of various disrupting
abnormalities. The performance of our method is evaluated on OCT volumes from patients
affected by AMD at different severity levels. An expert human grader and two independent
human observers manually annotated the foveal center, providing a reference location and an
estimate of human performance for this task. We examine variations to both the proposed network
architecture and the training procedure, to gain insight in the characteristics of the proposed
method that are essential for the performance. Furthermore, we demonstrate how the proposed
method could be applied in a more general context, for retinal pathologies other than AMD, and
independent of the vendor or the scanning protocol that was used.



Fig. 1. Examples of a fovea as seen in scanning laser ophthalmoscopy (SLO, left column) and
OCT (right column) in a healthy retina (top) and a pathological retina (bottom) where the
presence of cysts affects the expected appearance of the fovea. The green lines on the SLO
images show the position of the B-scans. The red line on the SLO indicates the B-scan with
the foveal center (as annotated by the reference observer). The red line on the OCT indicates
the lateral position of the fovea. Transversal and lateral are used to indicate directions in
the en-face plane. Axial refers to the depth of the B-scan in the retina. The top image has
been acquired with a dense scanning protocol (37 B-scans with a transversal resolution of
119 µm). The bottom image has been acquired with a sparse scanning protocol (19 B-scans
with a transversal resolution of 257 µm). The images are cropped in the axial direction for
visualization purposes.

2. Data

A total of 2,244 OCT volumes from the European Genetic Database (EUGENDA), a large multi-
center database for clinical and molecular analysis of AMD [32], were used for the development
and evaluation of this study. The OCT volumes were acquired using a Heidelberg Spectralis
HRA+OCT (Heidelberg Engineering, Heidelberg, Germany) at a wavelength of 870 nm and
consisted of a stack of horizontal slices (B-scans) at different resolutions. The lateral resolution
ranges from 6 µm to 14 µm. The axial resolution is 3.9 µm. The transversal resolution (distance
between B-scans) varies, but the vast majority of scans is acquired at a transversal resolution of
either ∼120 µm (37 B-scans) or ∼240 µm (19 B-scans). Figure 1 shows an example of the dense
scanning protocol (37 B-scans) and the sparse scanning protocol (19 B-scans). For a subset of
OCT volumes the AMD severity level is graded, based on the assessment of a color fundus
image acquired at the same time, following the Cologne Image Reading Center and Laboratory



(CIRCL) grading protocol [33]. This grading protocol includes the following AMD severity levels:
no AMD, early AMD, intermediate AMD, advanced AMD with choroidal neovascularization
(CNV), and advanced AMDwith geographic atrophy (GA). The EUGENDA study was performed
according to the tenets set forth in the Declaration of Helsinki, and approved by the Institutional
Review Board. Written informed consent was obtained before enrolling patients in EUGENDA.
A development set of 1844 OCT volumes from 399 subjects was selected and split into a

training set of 1744 volumes and a validation set of 100 volumes for algorithm training and
optimization, respectively. An independent test set of 400 OCT volumes from 400 eyes of
238 subjects was used for the evaluation of the algorithm performance. The test volumes were
randomly and evenly extracted from different AMD severity levels, with 100 volumes for each of
the four AMD severity levels, i.e., no AMD, early AMD, intermediate AMD and advanced AMD.
Scans with large registration errors or poor image quality were excluded.

Before processing, all B-scans have been resampled to a constant resolution of 11.5 µm×3.9 µm
(lateral × axial). The lateral width of the scans in the test set varies from 391 pixels (4.5 mm) to
888 pixels (10.2 mm) with axial depth of 496 pixels (1.9 mm).
For all selected scans in the development set, the location of the foveal center was manually

annotated as a single 3D coordinate in the OCT volume by a human grader. Only OCT information
was used for the manual localization of the fovea, although additional imaging information, such
as the corresponding infrared scanning laser ophthalmoscopy (SLO) image, might be available.
The human grader was instructed to indicate the point on the inner limiting membrane (ILM)
closest to the foveal center, identified by the aforementioned characteristics of the fovea. In case
of unnatural foveal deformations due to pathology, the grader had to indicate the point of minimal
thickness of the retinal nerve fibre layer. For all OCT volumes in the test set, an experienced
grader (VS) and two independent graders (BL, CS) annotated the foveal center following the
same protocol as in the development set. The annotations from the expert grader were considered
the reference standard for this study, while the annotations from the other two observers were
collected for comparative analysis of human performance.

To validate whether the method would generalize well to other retinal pathologies, a set of 50
OCT volumes from patients affected by diabetic macular edema (DME) and 50 OCT volumes
from patients affected by central serous chorioretinopathy (CSC) was used. For this set the
reference fovea was set by a single observer (BL). All OCT volumes in this set were collected
using a Heidelberg Spectralis OCT scanner.
Additionally, an external set was used in order to evaluate how the proposed method can be

adapted to be used on data with different properties. This publicly available data set consists of
384 volumes acquired with a Bioptigen scanner [34]. Compared to the scans from Heidelberg
Spectralis, these scans have a higher transversal resolution of 67 µm per pixel (100 B-scans
per volume), but they present a higher level of noise within each B-scan. The scans in this set
have been graded as control (115 scans) or intermediate AMD (269 scans). For this data set
manual delineations of retinal layers are available for the central 5 mm of the retina. The center of
these annotations coincides with the foveal center, and is hence chosen as the reference location
for this data set. A subset of 40 images (20 control, 20 AMD) has been randomly selected for
development. The remaining 344 images are used for evaluation.

3. Methods

In the proposed approach, the identification of the fovea is addressed as a classification problem,
where every pixel in every B-scan is classified using a CNN as either being the true fovea center
or background, based on a contextual window of information around the pixel. The pixel with the
maximum likelihood after classification will then indicate the location of the fovea. However,
this approach faces the following challenges: 1) for an accurate classification, the contextual
window (defined by the receptive field of the network) should be large enough to include sufficient



Fig. 2. Visualization of the network architecture. The solid arrows represent convolution
operations. The dashed arrows represent a copy operation. The blue layers represent the
output of the regular convolutions. The green layers represent the output of the dilated
convolutions. The resolution of the feature maps remains the same throughout the network.
Because the network is fully convolutional, it can be applied to inputs of arbitrary size.

structural aspects, such as the confluence of retinal layers, while maintaining pixel precision and
computational requirements; 2) for effective training of the CNN, the extreme class-imbalance of
the classification problem (the few pixels representing the foveal center versus the large amount
of background pixels that only rarely contain relevant information) should be considered. To
address the first challenge, we propose a novel CNN architecture containing anisotropic dilated
convolutions [35] (also known as atrous convolutions [36,37]) enclosed by a shortcut connection.
Compared to regular convolutions, dilated convolutions allow for a more efficient expansion of
the receptive field of the network (and consequently the contextual window), while maintaining
tractable computational requirements and pixel accuracy. The second challenge is addressed by a
dynamic training procedure where the provisional classifications of the CNN are used to identify
relevant training samples. Details about the proposed architecture, depicted in Fig. 2, and training
procedure are provided in the following sections. The proposed method is implemented in Python
2.7 using the Theano [38] and Lasagne [39] packages.

3.1. Network architecture

The proposed architecture makes use of a fully CNN architecture [40]. In contrast to traditional
CNNs, which usually include one or more fully connected layers, fully CNNs exclusively make
use of convolutional layers (optionally also pooling layers). Because spatial correlation between
input and output is conserved in fully CNNs, they can be applied efficiently to inputs of arbitrary
size. Within a fully CNN, the receptive field of the network is gradually expanded by stacking
multiple convolutional layers. A regular 3 × 3 convolutional layer increases the receptive field
by adding a border of one pixel around the output of the previous layer, and can in this way
be used for linear expansion of the receptive field. In order to obtain a large receptive field, a
large number of convolutional layer need to be stacked, which can have a detrimental impact on
performance [41] and is memory-wise infeasible. Pooling layers, in contrast, are very effective
in expanding the receptive field. A 2 × 2 pooling doubles the receptive field of the previous
layer, and therefore allows for an exponential expansion of the receptive field. However, after
every pooling operation the resolution of the output, and consequently the pixel level accuracy, is
decreased. Although the lost resolution can be recovered using interpolation techniques such
as shift-and-stitch [40], this is computationally prohibitive. Dilated convolutions, like pooling
operations, can be used to obtain exponential expansion of the receptive field by incorporating a
specific spacing between the parameters of the filter [35], as shown in Fig. 3. However, unlike
pooling, they preserve the resolution of the input image. In this way, a fast expansion of the



Fig. 3. Visualization of the dilated convolution filter at layer 3, with a receptive field of 11 ×
9 pixels. The pixels with black dots are included in this filter. These pixels have a receptive
field of 5 × 5 pixels each, as a result of the previous two convolution layers. The different
shades in the figure represent the overlap of these subfields.

receptive field can be achieved with just a few layers and without losing resolution.
The proposed architecture incorporates five layers with dilated convolutions in order to increase

the receptive field R. The receptive field of a CNN with dilated convolution filters can be
calculated as:

Ri = Ri−1 + di · (ki − 1) (1)

where Ri is the receptive field at layer i, di is the size of the dilation (number of pixels between
the weights in the filter), and ki is the size of the filter. See Fig. 3 for a visualization of the dilated
convolution filter and the receptive field at Layer 3. By increasing the dilation factor di for deeper
layers a fast expansion of the receptive field can be obtained.
In the proposed network architecture shown in Fig. 2 and summarized in Table 1, the first

two layers are regular 3 × 3 convolutions that provide low level feature extraction. Next, five
layers with dilated convolutions are included to provide a large contextual window. Similar
to [35], the size of the dilation factor is doubled for every layer deeper in the network. We choose
anisotropic dilated convolutions, with a larger dilation factor in the lateral direction, because
of the anisotropic resolution of the B-scans and taking into account that important structural
clues, such as the confluence in retinal layers, are especially observed in the lateral direction. A
shortcut connection combines the output of the last regular convolution (Layer 2) with the output
of the last dilated convolution (Layer 7) by concatenating them in the feature dimension. Such a
shortcut connection can combine information at different levels of abstraction or different scales
and may increase accuracy and training efficiency [40–42]. Finally, a 3× 3 convolution is applied
and the last two layers perform feature combination using 1x1 convolutions. As a consequence,
the network has a receptive field of 193 × 131 pixels (see Table 1). After every convolution layer
(except the output layer), a leaky rectify non-linearity with leakiness 0.01 is applied [43]. At the
output layer a softmax function is applied over the two classes, fovea and background.

3.2. Training procedure

The network is trained using standard backpropagation with RMSProp updates, and cross entropy
as cost function. Every iteration a batch of 64 patches (32 fovea and 32 background) is supplied
to the network. The size of the patches is 197 × 135 pixels, which yields an output of 5 × 5
pixels (due to the loss of border pixels after every convolution operation). Hence, by increasing
the patch size from the minimal 193 × 131 pixels to 197 × 135, the error can be averaged over
25 pixels per patch. The fovea patches are always centered on the manually created reference
location, while background patches are drawn from the remaining pixels in the B-scan. In order
to avoid extracting background patches that are ambiguous, pixels in a region of 50 × 50 pixels



Table 1. Summary of the network architecture. The dilation (di) refers to the spacing in
the dilated filters in the horizontal and vertical direction, respectively. The receptive fields
indicate the size of the contextual window of all pixels that can influence the network output
at that layer.

Layer (i) Filter size (ki) Type Dilation (di) Channels Receptive Field (R)

1 3 × 3 Conv (1, 1) 32 3 × 3
2 3 × 3 Conv (1, 1) 32 5 × 5
3 3 × 3 Dilated (3, 2) 64 11 × 9
4 3 × 3 Dilated (6, 4) 64 23 × 17
5 3 × 3 Dilated (12, 8) 64 47 × 33
6 3 × 3 Dilated (24, 16) 128 95 × 65
7 3 × 3 Dilated (48, 32) 128 191 × 129
8 - Concat (2 + 7) - 32 + 128 191 × 129
9 3 × 3 Conv (1, 1) 128 193 × 131
10 1 × 1 Conv (1, 1) 64 193 × 131
11 1 × 1 Conv (1, 1) 2 193 × 131

around the fovea are not included as background. Background patches are very abundant (up to
107 pixels per OCT volume), but only rarely very challenging: everything above or below the
retina is almost completely black, and patches inside the retina are usually easily discriminated
from the fovea. Therefore, in order to train the network more effectively, background patches are
selected from more challenging locations, according to the following strategy, adapted from [44].
At every iteration, the network in its current state is applied to the 32 B-scans from which the
fovea patches are extracted. From these 32 B-scans, the misclassifications of the background
pixels by the current network are used to identify challenging locations. Each background pixel
is assigned a weight wi = |yi − li |. Here, yi equals the classification of the current network for
pixels i, and li its label. The weights are now used to draw a weighted random sample at 32
locations, where the probability for each background pixel to be included is calculated as:

pi =
wi∑

j∈X− wj
(2)

Here pi is the probability of background pixel i to be included in the sample and X− is the set of
all background pixels in the current set of 32 B-scans. In this way, misclassified background pixels
are more likely to be used during training. For computational efficiency, background pixels from
other B-scans than the one with the fovea annotation are not included in the training procedure.
Although background pixels from other B-scans may provide some additional information to
train the network, we suspect that the foveal B-scans contain sufficient challenging samples, due
to e.g. presence of fluid, or in some cases the optic disk.
In order to artificially increase the variation in the training set the patches are augmented by

applying horizontal flipping with a 50% chance, and a random rotation between −10° and 10°.
The network is trained for 16 epochs in total: 8 epochs with learning rate 0.001 and 8 epochs
with learning rate 0.0001. Here, one epoch is defined as a pass over all data, consisting of 55
iterations, where 32 of the 1744 OCT volumes are used per iteration.

3.3. Classification

Although the network is only trained on B-scans containing the foveal center, it is applied to
all B-scans in an OCT volume to find the foveal center in unseen scans, where the B-scans are
zero-padded to compensate for the loss of border pixels. In this way a likelihood of belonging to



Fig. 4. Preview of the likelihood maps as generated by the network. Top images show the
input foveal B-scan. The bottom image includes a heatmap overlay representing the fovea
likelihood. The left example represents an intermediate AMD case, whereas the right case
represents advanced AMD.

the fovea for each pixel in the volume is obtained. Next, the probability volume is smoothed with
an anisotropic three dimensional Gaussian filter. The Gaussian smoothing could remove possible
outliers and may improve accuracy. Finally, the pixel with the global maximum probability after
smoothing is chosen as the location of the fovea. Figure 4 shows a preview of the fovea likelihood
map for the foveal B-scan for an intermediate AMD and an advances AMD case.

4. Experimental design

The predicted fovea location of the proposed automatic method is compared with the reference
standard. We only take into account the lateral and transversal distance, because clinically the
axial position of the fovea is not well defined, nor is it very relevant for our application. Moreover,
deviations from the reference location in the axial direction are expected to be small compared to
the other two dimensions, due to the high axial resolution of 3.9 µm.

To derive other statistics, such as the mean distance to the reference, we discard detections with
a distance to the reference location larger than the anatomical foveal radius, i.e. 750 µm [45]. This
large distance is chosen even though the radius of the clinical fovea is much smaller (250 µm).
The reason for this is that for some OCT volumes the distance between B-scans is larger than
250 µm. Therefore, if we would cutoff at 250 µm, we may discard detections in adjacent B-scans
that may be inaccurate, but not necessarily wrong. We then compare the performance of the
proposed method with the two independent human graders and the scan center as foveal center.
To evaluate the performance of the proposed method on the external data set, the CNN will

be retrained with settings identical to the proposed method, using just the 40 scans that were
selected for training. Because this training set is much smaller than the original training set, the
same scans will be used multiple times per epoch.

To find out what distinctive features of the proposed method are essential for accurate detection
of the foveal center, we perform additional experiments with variations of the proposed architecture
and variations of the proposed training procedure. See Table 2 for an overview of the alternative
network architectures that are used. For each variation the same training procedure is used,
as described above. We will refer to the proposed network architecture as network A. As a
first variation, we test a network without the dilated convolutions (network B). This network
architecture is identical to network A, except that each dilated convolution layer is replaced
with a regular 3x3 convolution. As a consequence, the receptive field of this network is much
smaller (only 17 × 17 pixels). We also test a network without the shortcut connection (network
C). This network again has the same architecture as network A, but without the concatenation



layer. Instead, convolution layer 9 is directly connected to the last dilated convolution layer (layer
7). Next, we test two modifications to the size of the dilation factors in the layers with dilated
convolutions. Here, we use isotropic values for the horizontal and vertical dilation factors instead
of the anisotropic values proposed in Table 1. Network D uses isotropic dilation factors of (2, 4,
8, 16, 32) for layers 3 to 7, respectively, and, consequently, has a receptive field of 131 × 131
pixels. Network E uses dilation factors of (3, 6, 12, 24, 48) and, consequently, has a receptive
field of 193 × 193 pixels. In addition to these variations we test a different, more traditional CNN
architecture, based on VGG [46]. This network contains five blocks of two 3 × 3 convolutional
layers, with a max-pool layer in between the blocks. The first layers use 32 filters per layer and
after each max-pool operation the number of filters is doubled. The lost resolution due to the
max-pooling operations is recovered using shift-and-stitch [40].

Table 2. Variations of the proposed network architecture.

Network Dilated convolutions Shortcut Pooling Receptive Field

A yes, anisotropic yes no 193 × 131
B no yes no 17 × 17
C yes, anisotropic no no 193 × 131
D yes, isotropic yes no 131 × 131
E yes, isotropic yes no 193 × 193
F no no yes 140 × 140

Two variations to the proposed dynamic training procedure are investigated, using the originally
proposed network architecture (network A). First, we investigate the use of basic random sampling
(RS) of background patches instead of the proposed dynamic sampling strategy. Because it may
take longer for the network to converge if the background patches are sampled randomly [44],
this network is trained 8 times longer than the proposed method: 128 epochs in total (64 epochs
with learning rate 0.001 and 64 epochs with learning rate 0.0001). The second variation is to train
fully convolutionally (FC) on a single B-scans per iteration. That is, every iteration the network
will see the entire B-scan that contains the fovea. Classification errors are then back-propagated
for the 5 × 5 pixels around the fovea and the background pixels outside the 50 × 50 pixels around
the fovea. Similar to the proposed method, this network is trained for 16 epochs in total: 8 epochs
of 1744 iterations with learning rate 0.001 and 8 epochs with learning rate 0.0001.
Finally, the optimal value for the σ of the Gaussian filter is estimated from classifying 400

OCT volumes in the training set with the final CNN, using the proposed method (network A).
Here, candidate values for σ are drawn from {(iσa, jσl, kσt )|i, j, k ∈ [0, 1, ..., 4]} where σa, σl

and σt define the resolution of the grid of candidate σ-values in the axial, lateral and transversal
direction, respectively. Based on observations from preliminary tests, we choose σa = 1.25 µm,
σl = 5 µm and σt = 50 µm. Distances between the voxel with maximum fovea likelihood in the
smoothed probability volume and the training reference location are calculated for all candidate
σ values. Based on the distribution of these distances, the optimal value for σ will be determined.

5. Results

The proposed automatic method detected the fovea in 391 of the 400 (97.75%) OCT volumes
in the test set with a distance to the reference observer smaller than 750 µm. The mean (± SD)
distance to the reference for these volumes was 71 µm ± 107 µm. Of the 9 volumes with a larger
distance, most occurred in the advanced AMD subset: 1 control, 3 early AMD, 0 intermediate
AMD, 5 advanced AMD.

Figure 5 shows boxplots of the distances to the reference location for the proposed method, the
two observers and the scan center for each AMD severity level. The two observers both annotated



399 of the 400 test cases with a distance smaller than 750 µm, with a mean (± SD) distance of
57 µm ± 84 µm and 56 µm ± 80 µm, respectively. The OCT scans in the test set were not always
accurately centered on the fovea: in 21 of the 400 test cases (5.25%) the scan-center was not
located within 750 µm of the reference annotation. The scans were poorly centered on the fovea
especially in advanced AMD cases, where the distance to the reference was larger than 750 µm in
14 of the 100 cases (14%). The number of correct detections, with a distance of less than 250 µm
(the clinical fovea), was 364 (91%) for the proposed method, compared to 379 (94.75%), 384
(96%) and 306 (76.5%) for observer 1, observer 2 and the scan center, respectively.

On the DME and CSC set, the fovea was found within 750 µm of the annotated location for 93
of the scans (93 %, 46 DME, 47 CSC), with a mean distance of 172 ± 132µm.

Fig. 5. Boxplots of the distance to the annotation per AMD severity level for the automatic
method (M), the two observers (O1 and 02) and the scan center (SC). The errors (dis-
tance > 750 µm) are included for the creation of the boxplots, but are cut off from the figure
for visualization purposes.

On the external data set, the proposed (retrained) method detected the fovea with a distance
smaller than 750 µm in 328 of the 344 OCT scans (95.35%), with a mean (±SD) distance of
63 µm ± 84 µm. Again, most errors occurred in pathological retina’s: the fovea was missed in 1
out of 95 control cases (1.05%) and in 15 of the 249 AMD cases (6.02%).

Table 3 summarizes the performances of the different network architectures. Network architec-
ture B (with regular convolutions instead of dilated convolutions) shows a significant drop in
performance, with 227 errors (56.75%). The other network architectures (C, D, E and F) show
similar performance to the proposed method, with 9 (2.25%) to 11 (2.75%) errors. The two
variations to the training procedure (RS and FC) have resulted in lower performance compared to
the proposed dynamic method. The number of errors was 37 (9.25%) for RS and 30 (7.50%) for
FC (see Table 4).

The grid search over possible values of the σ parameter of the Gaussian smoothing operation
resulted in a σ of (3.75 µm, 15 µm, 100 µm) in the axial, lateral and transversal direction, respec-
tively. When using the raw probabilities as predicted by the CNN, the fovea was missed in 11 of



Table 3. Results for different variations of the proposed network architecture. Values in the
columns indicate the number of detections within the specified distance category (in µm).

Network architecture <25 25-75 75-175 175-750 >750

A - Proposed method 215 72 44 60 9
B - No dilation 71 53 21 28 227
C - No shortcut 217 76 43 54 10
D - 131x131 225 63 43 58 11
E - 193x193 217 73 39 62 9
F - Pooling 219 61 46 63 11

Table 4. Results for the variations to the proposed training procedure. Number of updates
refers to the number of iterations, or update operations (back-propagation) that were made
during training. Training time refers to the total time needed to train the CNN.

Training procedure Errors (>750 µm) Number of updates Training time

1 - Proposed method 9 880 6.58h
2 - Random sampling 37 7040 2.20h
3 - Fully convolutional 30 27904 8.18h

the 400 test cases (2.75%), which was reduced to 9 (2.25%) after the smoothing operation.

6. Discussion

The proposed method, using a fully CNN with anisotropic dilated convolutions that was trained
using a dynamic training procedure, was able to detect the fovea in OCT volumes successfully.
For healthy retinas as well as retinas affected by severe pathologies related to AMD, the accuracy
is comparable to human observers. Figure 6 shows some examples of correct detections of the
fovea. For a large subset of volumes the automatic method agreed almost perfectly with the
human reference. The distance between reference and prediction was less than 1 pixel (11.5 µm)
in 123 cases (30.75%) and less than 2 pixels (23 µm) in 206 cases (51.5 %). In some cases, the
proposed method predicted the foveal center close to the reference, but in an adjacent B-scan.
In Fig. 5 this is visible as clusters of values around ∼120 µm and ∼240 µm, the typical distances
between B-scans in this data set. Note though that this also holds for the two observers O1 and
O2. As can further be seen in Fig. 6, the proposed method performs well even in case of severely
disrupting retinal structures such as large cysts, fibrosis or atrophy. Also in case of poor image
quality the method was able to identify the fovea correctly.
Although the proposed method was trained only on healthy patients and patients affected by

AMD, it generalizes well to other retinal pathologies. In both DME and CSC fluid inside the
retina may cause severe structural disruptions, but the proposed method was still able to identify
the fovea in 93% of the cases. It is not feasible to validate the performance of the method for
every possible pathology. It should be noted though that no assumptions specific to AMD have
been made in the design of the proposed method. We therefore expect the method to become
more robust if training samples from other pathologies are added.
It is hard to make a fair comparison of the performance of the proposed method to other

methods. Different methods were evaluated on different data sets with differences in image
resolution, image quality, and type or severity of the pathology. Moreover, some performance
metrics may refer to the subset of correct classifications, while others do take into account
possible outliers. Table 5 includes a comparison of performance between methods, which should



be interpreted with care because of the differences in experimental setup between methods.

Table 5. Fovea detection performance reported by previous and current work. Accuracy
(Acc.) refers to the number of detections within 750 µm of the reference annotation.

Method N Vendor Pathology Acc. Distance (µm)

Wang et al. [18] 100 Cirrus Non-exudative AMD N/A 104 ± 62
Wu et al. [20] 80 multiple Neovascular AMD N/A 262.0 ± 262.9
Montuoro et al. [25] 100 Cirrus RVO N/A 300 ± 165 *

Proposed method 400 Spectralis Control/AMD 97.75% 71 ± 107
100 Spectralis Advanced AMD 95% 150 ± 151
50 Spectralis DME 92% 215 ± 140
50 Spectralis CSC 94% 130 ± 109
249 Bioptigen Non-exudative AMD 94% 70 ± 93

* Original values were reported in pixels instead of µm.

Figure 5 shows that the proposed method achieves a performance similar to the human
observers. In one case however, there was a large disagreement between the observers and the
reference standard. We suspect that the reference observer overlooked the true fovea here, while
the method and the two human observers did correctly detect it (see Fig. 7). In other cases the
agreement between human observers was good, and the mean distance between observer and
reference was in line with previously reported values. We observed a mean (± SD) distance
between reference and observers of 57 µm ± 84 µm and 56 µm ± 80 µm, respectively, while the
authors in [17] reported 58.83 µm for OCT scans from Heidelberg Spectralis. The scan center
is often a reasonable estimate of the true foveal center: only in 5.25% of the scans the distance
between the scan center and the true fovea was larger than 750 µm. However, as can be seen
in Fig. 5, it is not a very accurate measure. This is in line with previous work [17, 18] and
corroborates the need for an accurate automatic method for detection of the foveal center.
In eight cases (ignoring the scan where the human observers did not agree) the automatic

method failed to identify the fovea correctly and predicted a higher likelihood at a confounding
location. Some examples of erroneous predictions can be found in Fig. 8 and Fig. 9. Two errors
(control and early AMD) are due to a cut-off tilted retina, as in Fig. 8. In two early AMD
cases, the network misclassified the fovea due to epiretinal membrane (ERM) formation (one in
combination with an atypical fovea with ectopic inner foveal layers [47]). The remaining errors
in the advanced AMD subset are due to formation of a confounding structure in combination
with severe pathology near the fovea and/or poor scan quality, as in Fig. 9.



Fig. 6. Examples of correct detections of the foveal center (images are cropped and do not
represent the full extend of the B-scan). The red line indicates the reference location, the cyan
circle represents the predicted fovea location by the method. The method performs well even
in case of A: noisy or tilted images; B: large cysts; C: structural disruption due to fibrosis; D:
absent or minor foveal depression; E: other uncategorized structural deformations. All errors
in these images are smaller than 62 µm.



For the external set only 40 scans were needed for training to obtain satisfactory results (95.3%
accuracy). We believe it is possible to use such a low number of training samples because this
data set has a more homogeneous nature than the EUGENDA data set: there are less scans of
severely disrupted retinas because there is no advanced AMD and the quality of scans is much
more comparable between scans. Adding more training data will likely improve the performance,
whereas it should also be possible to mix the two data sets during training, to obtain a single
network that can handle data from both vendors. When applying the proposed method (without
retraining) on the external data set, performance was very poor with just 15.4% correct detections.
The reason for this is twofold. First, due to the different nature of the scans (much more noise,
less distinct layer boundaries), the response of the network at the fovea is much lower than for the
scans from Heidelberg Spectralis. Second, most scans in the external data set have bright artifacts
at the top of the image, with pixel intensities usually larger than average pixel intensity in the
retina. In combination with the zero-padded border that is added to the top of the image, this may
easily confuse the network. Therefore, in many scans the network gave a higher response at the
top of the image than at the fovea. The solution that we proposed in this paper is to retrain the
network on the external data set, demonstrating that it is feasible to apply our method to both data
sets. Alternatively, a denoising algorithm [48,49] could be applied to standardize input across
vendors, which may result in better cross-vendor applicability.

Fig. 7. Example image where the reference observer probably overlooked the true fovea
location and annotated a confounding location in the retina. The red line indicates the
reference location and the cyan circle is the predicted location of the automatic method. The
(overlapping) green lines on the OCT indicate the locations predicted by the two observers.

From all variations to the network architecture, only architecture B showed significant decline
in performance compared to the proposed method. The reason for this is most likely the small
receptive field, because a contextual window of 17 × 17 pixels (195.5 × 66.3 µm) is usually
not enough to reliably distinguish the fovea from other retinal structures. Unfortunately, the
results from the experiments regarding the proposed innovations, such as the shortcut connection
or the anisotropic size of the dilated filters, are inconclusive. The differences between the
proposed architecture and the variations that were tested may be too small to notice significant
differentiations. We do believe however, that the proposed innovations can be beneficial in
other settings. By using anisotropic dilated convolution filters, we are able to tailor the size
of the receptive field to our needs. This can be useful because the anisotropic nature of OCT



Fig. 8. Example error where the retina is tilted and cut-off at the top. The diagonal cut of
the retinal layers to the right of the predicted location resembles a confluence of layers
as typically observed near the fovea. In conjunction with the true fovea appearing a bit
obfuscated, this has led to a misclassification.

Fig. 9. Example error where the true fovea is affected and lacks many of the typical
characteristics. The structure in the inner retinal layers disappears around the confounding
location that was selected by the method. Therefore this location can easily be confused with
the foveal center.

B-scans often demands a larger contextual window in the lateral direction. For this particular
application, comparable performance can be obtained with the larger isotropic filters (network
E). For other applications this may not be the case, as we may be limited by available memory
or processing speed and if the receptive field is too large this could have an unfavorable impact
on the pixel-accuracy. Finally, the design choices for the network architecture of the proposed
method were made based on proposed architectures in literature, observations from preliminary
test and intuition. The fact that the exact details of the network architecture are of minor influence
on the final performance could be seen as a justification for the many ad-hoc decisions that are



often made in designing CNN architectures.
Network architecture F makes use of four max-pooling operations to increase the receptive field

of the network. After every pooling operation the output resolution is halved, so the final resolution
is 24 = 16 times lower. To recover this we applied shift-and-stitch on the two-dimensional images,
which means every B-scan had to be processed 162 = 256 times. This is very inefficient, and
the average classification time for a B-scan using shift-and-stitch is 3.18 seconds, compared to
1.31 seconds for the proposed method with dilated convolutions (measured on an Nvidia GTX
1080 GPU). In the current implementation, the method is applied to all pixels in every B-scan.
Finding the foveal center can therefore take up to 48 seconds (37 ×1.31 seconds) per OCT volume.
Arguably, this could be considered relatively inefficient, and for application to scans acquired
with an even denser scanning protocol (e.g. 200 B-scans), this could become prohibitive. A
solution would be to use a full retina segmentation [28], or an initial guess of the foveal center
from a vessel mask obtained from the corresponding SLO image to exclude large regions of the
background, which will make the implementation more efficient.
Two straightforward training procedures for training a fully CNN are random sampling of

class-balanced patches and training fully convolutionally on larger patches (or even whole images).
Both training procedures have been evaluated (RS and FC), but they demonstrated inferior results
compared to the proposed dynamic sampling approach. We believe that for this application it will
be very hard to obtain results as good as the dynamic sampling method with random sampling,
even though it could be the case that some hyperparameters have not been set to optimal values
for this experiment. The network will encounter difficult background patches only very rarely
and this is most likely not enough to accommodate effective learning, also when the training time
is prolonged even more.

The reason why training fully convolutionally (FC) produced inferior results remains unclear.
The number of B-scans used to train the network using the FC training procedure was identical
to the proposed dynamic sampling method. The difference is that the FC procedure makes 32
updates for 32 B-scans, while the proposed method only makes 1 update for a batch of 32 foveae
and 32 selected hard background samples. Interestingly, the latter appears to be more effective.
The proposed training procedure resulted in superior results even though less updates are made
and the training data is only a sparse, albeit carefully selected, subset of all available data. It is
possible that in order to obtain similar results with the FC training procedure we need to perform
a more elaborate exploration of different hyperparameters, or possibly use a weight map for
sampling the loss. These experiments lie outside the scope of this research.

6.1. Predictions at a sub-voxel level

Under the assumption that the true foveal center may lie anywhere in between B-scans, the
expected distance from the foveal center to the closest B-scan is 1

4 of the transversal resolution.
The transversal resolution varies between images, but can get as large as 297 µm per pixel,
which would mean an expected distance between the true foveal center and the closest B-scan
of 297

4 = 74.5 µm. This distance is larger than the inter-observer agreement of about 57 µm, and
is similar to the average distance error of the method. Hence, if we wish to obtain even more
accurate predictions of the foveal center, it makes sense to allow for predictions at a sub-voxel
level, i.e. in between B-scans.
A straightforward implementation that would allow for sub-voxel prediction would be to

calculate the center of mass of all probabilities inside a bounding box around the pixel with
maximum predicted probability:

c =

∑
i∈B wi ri∑
i∈B wi

(3)

Here c is the predicted foveal center at sub-voxel level, B is the set of pixels inside the bounding
box, wi is the assigned probability of belonging to the fovea for voxel i, and ri is the position of



voxel i (a three-dimensional vector).
Although we do not have human annotations at a sub-voxel level to validate whether the true

foveal center is indeed better approximated by this method, we may get some indirect indications
of the validity of the predictions. Assuming the errors of the human graders are random and
unbiased, the mean of the annotations made by the three observers may be a more accurate
prediction of the true foveal location than any individual prediction. Therefore, we expect that the
mean distance between the center-of-mass method and the mean of the observers is smaller than
the distance of the originally proposed method to the reference location.
Indeed this is the case, but for the 391 correct classifications the difference is not significant:

71 µm ± 107 µm originally, compared to 68 µm ± 69 µm for the center of mass to the mean of
the observers (p = 0.37, two-sided T-test). It should be noted though that in case all observers
annotated the foveal center in the same B-scan, the mean of the observers will still lie in this same
plane even in cases the true foveal center may be slightly off. Therefore, we may need to look
at the set of OCT scans where the three human observers differed in the B-scan in which they
made the annotation (72 scans, excluding scans where the method failed). For these scans, there
is a significant improvement of calculating the center of mass: 139 µm ± 123 µm mean distance
for the original method to the reference, compared to 78 µm ± 73 µm for the center-of-mass to
the mean of the observers (p < 10−5). This could indicate that we can indeed achieve a more
accurate prediction of the foveal center at a sub-voxel resolution.

To conclude, we have demonstrated how fully CNNs with anisotropic dilated convolutions can
be applied to accurately detect the foveal center in an OCT volume. Performance of the proposed
automatic method is comparable to human observers on a data set containing scans acquired
with different scanning protocols, variable image quality, and presence of severely disrupting
pathologies. Thus, the proposed method could facilitate automatic analysis of large macular data
sets even in the presence of significant retinal pathology.
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